Slide 6

register tanafer lead
what each blyeve ders．then convert

Why we Verilog？
experinent withepeacendory

Verilog Modules NOT tunctious．Wike achip with wies comeced（I80）．
basic cousthut : module each harducre in one module

It has \｛ delearation

Boolean Eypussion in Veniloy．

$$
\begin{aligned}
& \text { Verily we \& }, 1, \text { and } \sim 1 \\
& \text { and or } \\
& \text { not - } \\
& \text { XoR. }
\end{aligned}
$$

input $a, b ;$ CDedsue Ilo，
ontpue C ；
culdmodule.

Verilog Literal Numbers
number：〈size〉＇［Signed〉］〈radix＞value．

$$
\begin{array}{ccc}
\downarrow & b & \downarrow \\
\text { number } \& \text { bits } & b-b i n a y & d i g i t s . \\
\left.e^{\prime} j . \delta^{\prime} b \operatorname{col}| | b\right) & a_{0} & \delta \\
c^{\prime} d 29 & h & i s
\end{array}
$$

$$
\begin{aligned}
& \text { Ssimemation whet beduncie wild }
\end{aligned}
$$

$$
\begin{array}{ccc}
e j . \delta^{\prime} b 000 \mid(10) & d & 10 \\
\delta^{\prime} d 29 & h & \delta \\
& \text { myrus. }
\end{array}
$$

Buses：

$$
\begin{aligned}
& \text { assign STATUS }=\mu_{\text {ain }} \text {-bus }[15] \text {; } \\
& \text { (4) wine }[31: 0] \text { Main-busi } \\
& \text { wine }[3=0] \text { Opcode; } \\
& \text { assign Opcode }=M_{\text {ain_bus }} \text { [31:28] }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { wise }[[=0] \text { ont-buy; } \\
\text { wive }[15-0] \text { in_bus; } \\
\text { assign out_bus =in_bus; }
\end{array} \quad \text { out-bus }[0]=\text { in_-bus }[0]\right. \\
& \text { Verilog doesn't comsider an evror if use a sinal without dedarig. } 7]=[7] \\
& \text { (5) wive }[3: 0] \text { Enor-Coote; } \\
& \text { wive }[1: D] \text { Main_Rus; } \\
& \text { assign } \operatorname{Main}-B u=\left\{4^{\prime} b 0000,4^{\prime} b^{\prime \prime l} 1\right\} \text { : } \\
& \text { (8) wive }[1: 0] x=2^{\circ} b 10 \text {; } \\
& \text { wive }[7: 0] y=\{4\{x\}\} ; \quad y=\delta^{\prime} b l o l o l a l o . \\
& \text { (7) } 2-D \text {. } \\
& \operatorname{Nig}[3: 0] \text { data }[7=0] \text {. Selerents } 4 \text { bit cach } \\
& \text { - 访泡. } \operatorname{data}[7]=4^{\prime} \text { booll; } \\
& \text { (8) bitmise Boolean exprestion }
\end{aligned}
$$

$$
\begin{aligned}
& \text { result } \left.[1]=A[1] \& B E_{1}\right] . \\
& \text { (9) wive result }=\mid A_{;} ; \text {renult }=(A[0] \mid A[1 J\rangle, \text {) } \\
& \text { wie resu't }=\$ A \text {; } \\
& \left.\begin{array}{l}
A[0] \\
A[T]
\end{array}\right)-1
\end{aligned}
$$

e．g．For thermoseat
wive result＝\＆A；
egg．For thermostat
module Thermostat（preset Temp，current Temp， Can（on）；

$$
\begin{aligned}
& A[0]- \\
& A[0]-\sqrt{\text { resit }}
\end{aligned}
$$

$$
\text { input }[2: 0] \text { preset Temp, cuwent Temp; // } \xi \text { bits each }
$$

outpue $\operatorname{lan} \theta_{n}$ ；
arsign $\tan D_{n}=($ curare Teary $>$ preset top）； endmodure

Define
'define Sa 2'boo no 分号.
mean $S a$ has value 2 ＇b oo．to use．＇Sa
Conditional Operator

$$
\langle\text { cond_expr>? <true_expr>: ctalse-expr> }
$$

if（coucl－expr）is true，then valve of entire expression is the value given 怆．
e．g．if in is 1，$($ in ？Sb：Sa $)$ is＇Sb
venin of multiplexer：

Always Black．
describe behurionr
alwnys＠（＜sensitivity＿list＞）begin．
each always block one hardware，one always． ＜sequence \cdots order matters \Rightarrow describes one block of end． harducne
men sensitivity，list changed，statements inside is evaluated．
list of signals，separated by，or＂or＂or＊
NOT Input parameters．
Not Pass Value．
determines when the statements with be evaluated
in always block，no loops．
if, case, case
use begin and end to group statements
signals，declared os Frey＂instead of＂wive＂
No using assign statement
block outputs using＂＝or $<="$
If $($＜condition expression $>)$
Statement＞

Statement>
[else <statement>]
case (〈selector〉)
$\{<$ label list $\rangle:\langle$ statement $>\}$
[default: <statement>] soptioned.
encase
egg. Nays in Moth Function
module Days InNouch (month, days);
input [3:0] month;
antput $[4=0]$ days; $\}$ output $\mathrm{veg}[4=0]$ days;
$\operatorname{reg}[4=0]$ days:
always @(month) begin U wen month chafe, output
case (month)

$$
\begin{aligned}
& 2=\text { days }=5^{\prime} d 28 ; \\
& 4,6,9,11=\text { days }=5^{\prime} d 30 ; \\
& \text { default }=\text { days }=5^{\prime} d 31 ;
\end{aligned}
$$

endorse.
end
end module
egg. Writing turth table in Verilog,
nodule Prime (in, isprime);
input [$3=0$] in ;
outpoint reg isprime;
always@ (in) begin

endusohre
always@ (c^{*})
It all signals in allays bloch,
Combinational Logic Bǘdiry
verily for $2=4$ decoder.
module Der $24(a, b)$;
input $[1=0] a$;
output $[3=0]$ b;

$$
\text { assign } b=\{a[3]|a[2], a[3]| a[1]\},
$$

$$
\text { module INV-GATE }(A, z)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { wive }[3=0] b=\frac{1 \ll a i}{\downarrow} \text {. } \\
\text { endmodule } \\
x \ll Y \text { mean }
\end{array} \\
& X<C Y \text { meems shift } X \text { to left by } Y \text { bit } \\
& b_{0}=a_{3} v a_{1} \text { module } \operatorname{Enc} 42(a, b) \text {; } \\
& b_{1}=a_{3} v a_{2} \\
& \text { ingut }[3=0] a \text {; } \\
& \text { sutput }[1=0] \text { b; } \\
& \text { endmedule } \\
& 1 \text { bit, } 2 \text {-input one-hot seleit mux } \\
& \text { module } \mu_{u x} Z_{a}(a, a 0, b, b) \text {; } \\
& \text { input } a 0, a_{1} \text {; } \\
& \text { input [l=0] S; } \\
& \text { ontput } b \text {; } \\
& \text { assign } b=\left(S[0] \& a_{0}\right) \mid\left(S[1] \& a_{1}\right\rangle ; \\
& 2 \text { bit, } 3 \text {-ingut Max } \\
& \begin{array}{l}
\text { an } \\
a_{1} \\
a_{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \underbrace{2}_{3}-b \\
& \text { module Mux3-2 }\left(a_{2}, a_{1}, a_{0}, b, b\right) \text {; } \\
& \text { input }[1=0] \text { a0, a1 }, a_{2} \text {; } \\
& \text { input }[z: 0] s \text {; } \\
& \text { output }[1: 0] \text { b; } \\
& \text { assign } b=\left(\{s[0], S[0]\} \& a_{0}\right) \mid \\
& \left(\{s[1], s[]\} \& a_{1}\right) \\
& \left(\{s[2], s[2]\} \& a_{2}\right) ; \\
& \text { endmolule } \\
& \text { aluays @(*)begin } \\
& \text { case (s) } \\
& \text { 3'bool: } b=a_{0} \text {; } \\
& \text { 3lbols: } b=a 1 \text {; } \\
& \text { 3'b100 = b=a2; } \\
& \text { defate }=b=\left\{\delta \left\{\frac{l^{\prime} b x}{\text { don't cave }}\right.\right.
\end{aligned}
$$

module \ldots.

$$
\begin{aligned}
& \text { NAM2_GATE } \operatorname{Vo}\left(I_{n 1}, I_{n 2}, X\right) i \\
& \text { ANV-GATE } V_{1}(X, \text { OUT1)i }
\end{aligned}
$$

module supple must be connexked to 'ave"
Named Port Association.

$$
\begin{aligned}
& \text { NANT_GATE VO(IN|,INZ,X); } \\
& \text { NANI_GATE VO (.A (ln } 1), B(\mid N 2), z(X)) ;
\end{aligned}
$$

Model Parameters.
module <module_name> (<port list>);
$\{$ parameter <parameter name> $[=\langle$ defan't value $\rangle ;\}$

$n: m$ decoder -
module dec (n, m);
parameter $n=2$;
parameter $m=4$;
input $[n-1: 0]$ a;
outpoint $[m-1=0] b ;$
wive $[m-1=0] b=1 \ll a$;
endmodule want $3 \rightarrow 8$ decoder:
it want $3 \rightarrow 8$ decoder $\#(3,8) \quad v,(a, b)$
Der
parameterized multiplexer (w). module Max $a_{a}\left(a_{1}, a_{2}, a_{3}, s, b\right)$; parameter $k=1$; input $[k-l=0]$ as, a_{1}, a_{2}; input $[z=0] \quad S$; outpoint reg $[k-1=0] \quad b$; always@(*)beg.in case (3)

$$
3^{\prime} 6001: b=a 0 \text { : }
$$

$$
\begin{aligned}
& 5000 \vdots b=a 0! \\
& b
\end{aligned}
$$

Rules: (to ensure synthesizable)
(1) all outputs depend on ament inputs (purely combinational).
$\left\{\begin{array}{l}1 \text { every input should in sensitivity last or use @(*) } \\ \text { 2. Every output should be assigned a value. for ever possible inputs }\end{array}\right.$
if combinational loop ho :

every always block must watch one of the rules
$7^{\text {not }}$ synthesizable 7 not syn ty tor testbench.
Initial Block.
not synthesiabble used only for test bench
initial begin
ordor-makkens, allour deleon e-9. \#lo
only tor simulation.
initial begin
ovdor-makens, allow deter. e.g. \#10
end.
time unit Modelsin: simulation
e_{g} module test_mai lIno I/O Quartos: implementation

$$
\begin{aligned}
& \text { reg }[2=0] \text { in; } \\
& \text { wine out; } \Rightarrow D V T \\
& \text { Majority m }\left[\operatorname{in}[D], i\left[T_{1}\right], \operatorname{in}[2], \text { out }\right) \text {, }
\end{aligned}
$$

generable
an 8 patterns
initial begin
module Majority $(a, b,($, on $t)$, input a, b, c; output gut; assign out $=(a \& b) \mid(a \& c) /(b \& c)$; endmodule

Testbenh no input oukput.
\#100;
$\$$ display ("in $=1 / o b, ~ o u t=\% b^{4}$ (in, out);

$$
i n=i n+3 \text { boo l; }
$$

end
$\ln \ell$
endmadule.
How to wite?
(1) Think of waveform I want. (change state times) $0 \rightarrow 1$ or $H 0$
(2) Write script
$e . g$

module AB_test;
veg $A, B ;$
wive out;
Foo DUT (A,B, out); Il instantiate design.
initial begin generate input patterns

$$
A=1^{\prime} h \cap: \quad / / t=0
$$

initial begin generate input patterns
endmodule

$$
\begin{aligned}
& A=1 ' b 0 ; \quad / 1 t=0 \\
& B=1 \text { 'bo; } \\
& \# 10 ; \\
& A=1 ' b 1 ; \quad \| t=10 . \\
& \# 5 ; \\
& B=1 b l ; \quad \| t=15 \\
& \# 5 ; \\
& A=1 ' b 0 ; \\
& \# 2 ; \\
& B=1 \text { 'bo; } \\
& \# 10 ; \\
& \$ \text { stop }(0) ; \quad \text { stop simulating. } \\
& \text { end }
\end{aligned}
$$

At minimum, each line of synthesirable Verilog should be tested at least once
(1) Test one block.
(1) Text umbinations of blocks.
(3) Test what should happen does happen. shouldn't happendoesn't happen

Debugging
Simulation (Design) Errors
(1) Use Model Sim waveform viewer to see error
(2) Find the block. of signal's driver.
(2) check input to block in waveform ciener is correct,
(4) If all inputs are ok, problem is the Verily in the block.

It input is not k. Trace source block.
Top Level Module

Top Level Module
specify top level module". vim 〈top_ierel_name〉
when Starting simulation in Modelsim transcript window In Zuartus, when setting up project.

In Combinational Modules.
Sensitivity list tor case statements include all Inputs

